+98 21 8609-3065 h.veisi@ut.ac.ir
Fundamentals of Soft Computing

مبانی محاسبات (رايانش) نرم

نيم‌سال اول 1402-1401

معرفی

تعداد واحد: 3                                      پیش‌نیاز: ندارد

نوع : نظری

زمان و محل کلاس:

شنبه و دو‌شنبه، ساعت 13:00 الی 15:٠٠

حضوری در دانشکده علوم و فنون نوین

غیرحضوری (در صورت لزوم) در سامانه eLearn دانشگاه تهران

مدرس: دکتر هادی ویسی، دانشکده علوم و فنون نوین، دانشگاه تهران (پست الکترونیکی: h.veisi@ut.ac.ir)

دستیار آموزشی: علی رحیمی (ali.rahimi97@ut.ac.ir)

شرح درس

درس مبانی محاسبات نرم شامل مروری بر مفاهیم و کاربردهای پایه محاسبات (رایانش) نرم وروش‌های غالب در این زمینه در سه محور محاسبات نرونی (شبکه‌های عصبی مصنوعی و یادگیری عمیق)، محاسبات فازی (مبانی تفکر و منطق فازی)، و محاسبات تکاملی (الگوریتم ژنتیک و الگوریتم‌های هوش جمعی) است. در این درس، اصول نظری و عملی با روش‌های غالب در سه موضوع مذکور پوشش داده می‌شوند و تمرین‌های متناسب ارائه می‌شود.

منابع

  1. هادي ويسي، كبري مفاخري، سعيد باقري شورکي، مباني شبكه هاي عصبي: معماري، الگوريتم‌ها و كاربردها، انتشارات نص، پاييز 1388 (ترجمه Laurene Fausette, Fundamentals of neural networks, architecture, algorithms and application, Prentice Hall, 1994)
  2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.

3. محمد صنيعي آباده، زهره جبل‌عامليان، الگوريتم‌هاي تكاملي و محاسبات زيستي، انتشارات نياز دانش، 1401.

  1. David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.
  2. George J. Klir, Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, 1995.
  3. Karray, C. De Silva, Soft Computing and Intelligent Systems Design: Theory, Tools, and Applications, Addison-Wesley Publishing, 2004.
  4.  J yh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall, 1997.

 

Slides Download Links

i

معرفی درس

i

مقدمه و معرفی

i

مقدمه، شبکه مک کلاچ-پیتز و شبکه هب

i

پرسپترون، آدلاین

i

شبکه‌های عصبی، پرسپترون چند لایه (پس‌انتشار خطا)

i

یادگیری عمیق

i

شبکه‌های بازگشتی

i

محاسبات زیستی: پردازش تکاملی

i

محاسبات زیستی: هوش جمعی

i

فازی: مجموعه‌ها

Scores

Dear students, by having your student number, you can see the grades related to your homework and midterm exam.
Attempts have been made to calculate the scores with the utmost accuracy and fairness.
To view each section, click on its title, then Download.

All
Final
Project
Midterm
Quiz 1
Homework 4
Homework 3
Homework 2
Homework 1

نمره‌دهی

توضیح

وزن

عنوان

بعد از هر موضوع (وزن تمرین‌ها برابر نیست) 55% تمرین

ممکن است بدون اعلام قبلی باشد

5%

آزمونک (کویز)

دوشنبه 30/08/1401 ساعت 13:00 (حضوری) 20% امتحان میان‌ترم
از کل مطالب درس، مطابق برنامه دانشگاه 20% امتحان پایان‌ترم

موضوع اختیاری، مرتبط با مطالب درس
(آخرین مهلت انتخاب موضوع: 01/09/1401)
تحویل پروژه: اولین هفته بعد از آخرین امتحان پایان‌ترم
(دوشنبه 10/11/1401)

10% (نمره اضافی)پروژه
پاسخ دادن به سوالات حین تدریس و مشارکت در بحث‌های کلاس 2.5% حضور و مشارکت کلاس (نمره اضافی)

با توجه به اینکه بخش عمده نمره به تمرین‌ها و انجام پیاده‌سازی‌ها (کارهای عملی) اختصاص داده شده است، لذا جهت موفقیت، همراهی دانشجو در طول ترم و یادگیری مستمر، ضروری است.

سیاست‌های درس

1. تمرین: برای هر بخش (موضوع)، تعدادی تمرین در نظر گرفته شده است که باید در مهلت‌های مقرر شده تحویل شود. همفکری و همکاری در یافتن پاسخ سوال‌ها نه تنها بلامانع است، بلکه مورد حمایت نیز است، اما پاسخ هر دانشجو باید توسط خودش و به صورت مستقل نوشته شود و در صورتی که کپی بودن یکی یا چند مورد از پاسخ سوال‌های یک تمرین مشخص شود، کل نمره آن تمرین برای همه طرفین کپی‌برداری در نظر گرفته نمی‌شود.

تمرین‌های دارای پیاده‌سازی، باید هم شامل کدها و هم شامل گزارش مربوطه باشد (ارسال گزارش یا کد به تنهایی، شامل نمره نمی‌شود).

ارسال پاسخ تمرین‌ها: تنها به صورت الکترونیکی و به ایمیل استاد درس است. تحویل کاغذی نیاز نیست و در صورت نوشتن پاسخ تمرین‌های حل شدنی روی کاغذ، تصویر آن را ارسال کنید. همه مطالب و فایل‌های مرتبط با یک تمرین را در یک فایل فشرده شده ارسال کنید. فرمت نام‌گذاری فایل ارسالی به صورت زیر است (لطفا از ارسال فایل با اسم‌هایی مانند New Folder.rar یا HW.rar خودداری کنید):

SC_Family_StNo_HW#.rar

که در آن Family بیانگر نام‌خانودگی دانشجو، StNo شماره دانشجویی و # شماره تمرین است. مثلا پاسخ تمرین شماره 1 توسط آقای/خانم احمدی با شماره دانشجویی 830496001 به صورت SC_Ahmadi_830496001_HW1.rar است.

تاخیر در تحویل: تحویل به موقع پاسخ تمرین‌ها از موارد ضرروی است و پاسخ‌ها باید حداکثر تا ساعت 23:59 تاریخ تعیین شده ارسال شود. در صورت داشتن تاخیر در ارسال پاسخ‌ها، به ازای هر یک ساعت تاخیر (از یک ثانیه تا 60 دقیقه!) به میزان 1% از نمره آن کسر می‌شود.

2. آزمونک (کویز): از مطالب هر بخش، یکی یا دو سوال به صورت امتحان کوتاه (کویز) برگزار می‌شود که برگزاری آن ممکن است بدون اطلاع قبلی باشد. این آزمون‌ها در کلاس و به صورت حضوری است.

3. امتحان میان‌ترم و پایان‌ترم: امتحان میان‌ترم در تاریخ بیان شده و شامل کلیه مطالب تدریس شده تا آن تاریخ است و به صورت حضوری برگزار می‌شود. امتحان پایان‌ترم شامل کلیه مطالب تدریس شده (از جمله مطالب پوشش داده شده در میان ترم) است.

4. پروژه: : برای درس، هر دانشجو می‌تواند (به صورت اختیاری) یک پروژه کاربردی جهت پیاده‌سازی انتخاب کرده و آن را در MATLAB/Python (یا سایر زبان‌های برنامه‌نویسی) پیاده کند. پروژه حتما باید دارای پیاده‌سازی باشد و کار مطالعاتی به تنهایی پروژه محسوب نمی‌شود. در پروژه نیاز به نوآوری نیست و انجام یک کار مشابه آنچه که قبلا در یک مقاله یا پایان‌نامه انجام شده است، مورد قبول است. دانشجویانی که علاقمند به انجام پروژه هستند باید تا تاریخ اعلام شده موضوع پروژه خود را اعلام کرده باشند؛ اعلام موضوع پس از آن مورد پذیرش نخواهد بود و به معنای عدم انجام پروژه است. در زمان تحویل پروژه، علاوه‌بر کد برنامه، گزارش مکتوبی (به صورت تایپ شده) از دانشجویان تحویل گرفته می‌شود که باید شامل نتایج بدست آمده و تحلیل‌های مربوطه باشد. هر دانشجو می‌تواند با هماهنگی استاد موضوع خود را انتخاب کرده و در طول ترم اعلام نماید. موضوع پروژه الزاما باید مرتبط با مطالب درس باشد. نمره این بخش برای دانشجویان به صورت نمره مازاد در نظر گرفته می‌شود.

5. حضور و مشارکت: با توجه به غیرحضوری بودن برخی کلاس‌ها و عدم‌تمرکز برخی از دانشجویان (علیرغم حضور ظاهری در جلسه)، و همچنین به منظور تشویق به حضور فعال و مشارکت در بحث‌ها و پاسخ‌دهی به سوالات دانشجویان در کلاس (حضوری و غیرحضوری)، این نمره در نظر گرفته شده است. این مساله در جلسات کلاس بررسی شده و جمع حضور فعال و مشارکت افراد در کلاس به عنوان نمره این شاخص در نظر گرفته می‌شود. این نمره مازاد بر 20 نمره استاندارد کلاس است.

6. بازنگری نمره‌ها و برگه‌ها: دانشجویانی که درخواست دارند هر کدام از نمرات آنها بازنگری شود و یا برگه‌های آزمون‌های خود را ببینند، در تاریخی که برای تحویل پروژه درس اعلام می‌شود (هفته بعد از آخرین امتحان پایان‌ترم)، می‌توانند این کار را انجام دهند. رسیدگی به همه موارد فقط در این تاریخ انجام می‌شود.

7. تقلب و کپی‌بردای: هدف درس تمرین و یادگیری مطالب موردنظر توسط دانشجو در طول ترم است و لازم است تمام مطالب مربوط به تمرین‌ها توسط خود دانشجو انجام شود. هرچند همکاری و همفکری دانشجویان در حل مسائل درس توصیه می‌شود، اما پاسخ نهایی سوال‌ها باید توسط هر دانشجو به صورت مستقل نوشته شود. در صورتی که در هر شرایطی مشخص شود که تمام یا بخشی از مطالب توسط دانشجو آماده نشده و کپی‌برداری مستقیم و بدون مرجع بوده است، تقلب تلقی شده و مطابق قوانین انضباطی دانشگاه با آن رفتار می‌شود.

سیلابس درس
    • • مروری بر مفاهیم و کاربردهای محاسبات نرم
      • محاسبات نرونی (شبکه‌های عصبی مصنوعی)
      o مرور تعاریف، مفاهیم و تاریخچه شبکه‌های عصبی مصنوعی
      o معرفی شبکه پایه مک‌کلاچ-پیتز و هب: ساختار، الگوریتم، کاربردها و مثال
      o شبکه‌های پرسپترون و آدالاین: ساختار، الگوریتم، کاربردها و مثال
      o شبکه‌های عصبی پس‌انتشار (پرسپترون چند لایه): ساختار، آموزش و کاربردها
       روش‌های به‌روز کردن وزن‌ها (آموزش)
       توابع فعال‌سازی
       تعداد لایه‌های مخفی
       تقریب‌زننده جهانی
      o شبکه‌های عصبی عمیق: مروری بر مبانی و روش‌های رایج
       شبکه خودرمزگذار
       شبکه عصبی پیچشی (CNN)
       شبکه مولد مقابله‌ای (GAN)
      o شبکه‌های عصبی بازگشتی
       المان و جردن
       حافظه کوتاه مدت ماندگار (LSTM)
       مفهوم مکانیزم توجه
      o شبکه‌های مبدل (Transformers)
      • محاسبات تکاملی
      o مرور مفاهیم و تعاریف محاسبات تکاملی
      o مراحل الگوریتم‌های تکاملی
      o الگوریتم‌ ژنتیک
      o محاسبات زیستی مبتنی بر هوش جمعی
      • محاسبات فازی
      o مجموعه‌های فازی و عملگرهای مرتبط با آن
      o محاسبات (اعداد) و روابط
      o منطق و استدلال فازی
      o سیستم‌های فازی: طراحی کنترل‌گرهای فازی
      • ترکیب روش‌های ترکیب محاسبات نرونی، فازی و تکاملی

Notice: ob_end_flush(): Failed to send buffer of zlib output compression (0) in /home/smj97ir/public_html/wp-includes/functions.php on line 5427